Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

نویسندگان

  • Arnab Majumdar
  • Stephen P Arold
  • Erzsébet Bartolák-Suki
  • Harikrishnan Parameswaran
  • Béla Suki
چکیده

Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture.

Secretion of pulmonary surfactant that maintains low surface tension within the lung is primarily mediated by mechanical stretching of alveolar epithelial type II (AEII) cells. We have shown that guinea pigs ventilated with random variations in frequency and tidal volume had significantly larger pools of surfactant in the lung than animals ventilated in a monotonous manner. Here, we test the hy...

متن کامل

Paracrine stimulation of surfactant secretion by extracellular ATP in response to mechanical deformation.

We developed a heterologous system to study the effect of mechanical deformation on alveolar epithelial cells. First, isolated primary rat alveolar type II (ATII) cells were plated onto silastic substrata coated with fibronectin and maintained in culture under conditions where they become alveolar type I-like (ATI) cells. This was followed by a second set of ATII cells labeled with the nontrans...

متن کامل

NO protects alveolar type II cells from stretch-induced apoptosis. A novel role for macrophages in the lung.

We have previously shown that mechanical distortion or stretch of alveolar type II (ATII) cells induces both surfactant release and the induction of apoptosis. We hypothesize that nitric oxide (NO) secreted from alveolar macrophages (AMs) prevents cyclic stretch-induced apoptosis. We show that S-nitroso-N-acetyl-D, L-penicillamine (SNAP), a chemical donor of NO, protects cells against nuclear c...

متن کامل

Effect of thalidomide on the alveolar epithelial cells in the lung fibrosis induced by bleomycin in mice

Introduction: Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. In the adults type I and II pneumocytes, forms Components of the alveolar epithelial cells. In this study, we investigated the effect of thalidomide on the alveolar epithelial cells (type I and II pneumocytes) in ...

متن کامل

Stretch-stimulated surfactant synthesis is coordinated by the paracrine actions of PTHrP and leptin.

Intrauterine lung development, culminating in physiological pulmonary surfactant production by epithelial type II (TII) cells, is driven by fluid distension through unknown mechanisms. Differentiation of alveolar epithelial and mesenchymal cells is mediated by soluble factors like parathyroid hormone-related protein (PTHrP), a stretch-sensitive TII cell product. PTHrP stimulates pulmonary surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 112 5  شماره 

صفحات  -

تاریخ انتشار 2012